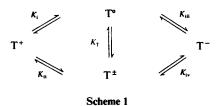
On the Calculation of Tetrahedral Intermediate pK_a Values

Peter J. Taylor

Zeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, UK SK10 4TG


The procedure of Fox and Jencks for calculating tetrahedral intermediate pK_a values, as $\Delta pK_a = \rho_i \Sigma \sigma_i$ relative to that of some defined amine or alcohol, is re-examined in the light of more recent estimates for σ_i . Using those of Charton, which are explicitly tuned to aqueous or near-aqueous conditions, we derive a value of $\rho_i = -9.1 \pm 0.4$ for the effect of substituent X on probe Y for a one-carbon separation (X–C–Y). Additionally we derive, for X–C–C–Y, a value of $\rho_i = -4.4 \pm 0.4$.

We also examine the possibility of assigning σ_1 values to charged substituents. It is shown that this approach can be made to work under strictly defined conditions, and results in a self-consistent set of σ_1^{\pm} values that may be used in the present context.

This subject was first systematised in 1974 by Fox and Jencks,¹ since when it has been further amplified in a number of publications by Jencks² and others.³ Jencks' procedure in outline is to start from some species of general formula $R^1R^2R^3COH$ or $R^1R^2R^3CNR_2$ of known pK_a —the closest match to the tetrahedral intermediate that is available—and then correct this pK_a through the relationship of eqn. (1). The σ_1 values are those of Ritchie and Sager⁴ and evidence is

$$\Delta p K_a = \rho_1 \Sigma \sigma_1 \tag{1}$$

given ¹ that the same ρ_1 value can be used for amines and for alcohols. This procedure will suffice for the ionisation processes $T^+ \longrightarrow T^\circ (pK_{T^+})$ and $T^\circ \longrightarrow T^- (pK_{T^\circ})$. One more microscopic value (Scheme 1) is required, and for this $T^+ \longrightarrow T^{\pm}$ is chosen, starting from $pK_a = 9.98$ for the ionisation process MeNH₂⁺CH₂OH \longrightarrow MeNH₂⁺CH₂O⁻. This value is corrected, if necessary, for the difference in σ_1 value between -NHMe and the amine involved. The fourth microscopic pK_a value (for the process $T^{\pm} \longrightarrow T^-$) then follows by difference. There is impressive evidence, *e.g.* from breaks in Brönsted plots, that many of these estimates are quite accurate.

We have been forced to reconsider this methodology through having recently encountered an unusually complex area for its application.⁵ Some putative intermediates contain extra ionisation processes which may affect the pK_a values of the reaction centre; some may require non-standard ρ_1 values; and, since no σ_1 value existed for some of our substituent groups at the time of the original work,¹ we have been compelled to look to other sources, or derive our own. Here we address in turn the problems that result.

Standardisation: σ_1 Scales.—Table 1 collates σ_1 values from three sources: the 1964 compilation of Ritchie and Sager⁴ (R & S; the set chosen is for compounds XCH₂Y); Charton's 1981 analysis (C); ⁶ and the recent compendium of Hansch, Leo and Taft (HLT), ⁷ drawn from a variety of sources. The listing of Table 1 is not comprehensive but includes all of concern to us ⁵ and, indeed, all or nearly all of those commonly encountered in the present context. Our 'consensus' values are those of Charton in nearly all possible cases, the only exceptions being entries 8, 26, 34, 35 and 37, where minor adjustments have been made in the interests of consistency, plus 45 which has been derived, along with 46, in the present study (see below). Values for 18, 24, 33, 39 and 53 result from obvious interpolation procedures.

Our choice of Charton's set⁶ comes about because these values are statistically based; because the resulting analysis is self-consistent; and because they are specifically tuned to aqueous or near-aqueous solution. The last criterion is of special importance for strong proton donors and acceptors which are also highly polarisable; it is not a feature of, for example, the HLT compendium⁷ from which we have also drawn some values. Substituent groups most strongly affected include OH and NR₂; the effect of concentrating on aqueous solution, relative to less discriminating scales, is chiefly to reduce σ_1 for OH relative to OAlk, and to increase σ_1 for all simple amino-groups. Independent evidence exists⁸ for the strong effect of solvent on σ_1 values.

Standardisation: ρ_1 Values.—Standardisation on a new set of σ_1 values necessarily involves re-derivation of the ρ_1 values on which eqn. (1) is based. We now present evidence for $\rho_1 = -9.2 \pm 0.4$ for amines and -9.0 ± 0.3 for alcohols, leading to a new compromise value of $\rho_1 = -9.1 \pm 0.4$ for the relation between $\Delta p K_a(Y)$ and $\Sigma \sigma_1(R)$ in $R^1 R^2 R^3 C Y$.

 ρ_1 Values for Amines of Type $R^1R^2NCH_2X$.—The pK_a compilation of Table 2, mostly from Perrin,⁹ is the most comprehensive that we have been able to assemble. It has been used to generate eqns. (2)–(10) of Table 4.

The data for primary amines NH₂CH₂X are much the most extensive, as noted by Fox and Jencks,¹ and all data together give $\rho_1 = -10.0$. However, this regression depends heavily on the data points for $X = CF_3$, CCl_3 and CN; in addition, that for $X = CH_2SH$ is plainly corrupt—the more than one unit pK_a difference reported between compounds 26 and 27 is clearly unacceptable. (Probably ionisation of 26 is complicated by zwitterion formation). Elimination of the latter plus X = CN, or plus $X = CF_3$ and CCl_3 , alters ρ_1 in opposite directions, but elimination of all four results in a value for ρ_1 not much different from that found when CN is retained. Provisionally we accept the latter value, $\rho_1 = -9.2$. Eqn. (10), with $\rho_1 =$ -10.1, is much the better of the two for tertiary amines. Neither equation for secondary amines is of an acceptable standard. Fox and Jencks,¹ using of course a different set of σ_1 values, obtained ρ_1 values of -8.6 and -9.3 for primary and tertiary amines respectively; Charton⁶ obtained -9.16 for the former.

Table 1 σ_1 Values for uncharged substituents

	<u> </u>	R&Sª	C ^b	HLT	Other	Consensus
1	н	0.00	0.00	0.03		0.00
2	Me	0.00	-0.01	0.01		-0.01
	Et		-0.01	0.00		-0.01
	Pr ⁱ		0.01	0.04		0.01
	CF ₃	0.41	0.40	0.38		0.40
	CHF ₂		0.32	0.29		0.32
	CH₂F			0.15		0.15
	CCl ₃		0.36	0.38		0.38
	CHCl ₂			0.31		0.31
	CH ₂ Cl	0.17	0.17	0.13		0.17
	C≡CH	0.05	0.29	0.22		0.29
	CH=CH ₂	0.05	0.11	0.13		0.11
13		0.10	0.12	0.12		0.12
	CH ₂ Ph	0.54	0.03	-0.04		0.03
15		0.56 0.23	0.57 0.20	0.51		0.57 0.20
	CH₂CN COM¢	0.23	0.20	0.17 0.33		0.30
	COMe CH COMe	0.28	0.50	0.33		d
	CH_2COMe CO_2Me	0.30	0.32	0.34		a 0.32
	$CO_2 He$ $CO_2 Et$	0.30	0.32	0.34		0.32
	CH_2CO_2Me	0.50	0.30	v.5 4		0.19
	CH_2CO_2Ne CH_2CO_2Et		0.15			0.15
	CONH ₂		0.15	0.26		0.28
	CONHMe		0.20	0.20		e
	CONMe ₂		0.28			0.28
	CH ₂ CONH ₂		0.06	0.08		0.08
27		0.25	0.24	0.33		0.24
	CH ₂ OH	0.11	0.11	0.03		0.11
	CH ₂ CH ₂ OH		0.06			0.06
	OMe	0.25	0.30	0.30		0.30
31	OEt		0.28	0.26		0.28
	CH ₂ OMe		0.11	0.13		0.11
33	CH ₂ OEt					f
34	CH ₂ CH ₂ OMe		0.00			0.06 ^g
35	OPh	0.38	0.40	0.37		0.38
	CH ₂ OPh					h
	OCOMe	0.39	0.38	0.42		0.39
	CH ₂ OCOMe		0.15	0.07		0.15
	CH₂OCOEt					h
	CH₂SH		0.12			0.12
	CH ₂ SMe	0.10	0.12	0.00		0.12
	NH ₂	0.10	0.17	0.08		0.17
	NHMe	0.10	0.13	0.03		0.13
	NMe ₂	0.10	0.17	0.15		0.17
	CH ₂ NH ₂	0.00		0.04		0.08
	CH ₂ CH ₂ NH ₂	0.15		0.22		0.04 ^{<i>i</i>}
	NHNH ₂	0.15	0.20	0.22 0.22		0.22 0.30
	NHPh N(Ma)Ph		0.30 0.15	0.22		0.30
	N(Me)Ph NHCOMe	0.28	0.13	0.31	0.19*	0.28
	NHCOPh	0.20	0.28	0.31	0.19	0.28
	CH ₂ NHCOMe		0.28	0.13		0.09
	CH ₂ NHCOPh		0.09	0.12		j
	$NHC(Me)=NPh^{i}$			0.38		0.38'
	1-Pyrazolyl			0.50	0.30 ¹	0.30
	1-Imidazolyl				0.50	0.51
	$N=C(CF_3)_2$			0.32	0,01	0.32
	$N=CCl_2$			0.26		0.26
	N=CH ₂				0.20 **	0.20
	N=CHPh			0.14	0.13 m	0.13
	N=C(Me)NHPh ⁱ					< 0.15 ^{<i>i</i>}
	$N=C(NH_2)_2$				-0.01^{k}	< 0.1 ^{<i>i</i>}

^a Ref. 4. ^b Ref. 6. ^c Ref. 7. ^d Assumed equal to CH₂CO₂R. ^e Assumed equal to CONH₂. ^f Assumed equal to CH₂OMe. ^g Assumed equal to CH₂CH₂OH. ^h Assumed equal to CH₂OCOMe. ⁱ See the text. ^j Assumed equal to NHCOMe. ^k Ref. 13. ⁱ J. Elguero, C. Estopa and D. Ilavsky, J. Chem. Res. (S), 1981, 364. ^m M. Charton, in *The Chemistry of Double-bonded Functional Groups*, ed. S. Patai, Wiley, New York, 1989, p. 239.

An alternative approach to the possible differences between primary, secondary and tertiary amines is to compare pK_a values directly, using the primary set as standards. Equations (11) and (12) result. These are much better equations than the

 $(n = 7, r^2 = 0.990, s = 0.18, F = 487)$ (11)

 $pK_a(sec) = 0.54 (0.39) + 0.97 (0.04) pK_a(prim)$

$$pK_{a}(\text{tert}) = -1.64 (0.46) + 1.10 (0.05) pK_{a}(\text{prim})$$

$$(n = 9, r^{2} = 0.984, s = 0.27, F = 438) \quad (12)$$

foregoing and there are no outliers even though both sets contain substituents, such as CN and CF_3 , which have caused problems in the regressions discussed above. This suggests very strongly that factors may be present which are independent of the usual

Table 2 pK_a Values for amines of formula $R^1R^2NCH_2X$

Х		σ_1	$R^1, R^2 = H$	$\mathbf{R}^1 = \mathbf{H}, \mathbf{R}^2 = \mathbf{M}\mathbf{e}$	$\mathbf{R}^{1},\mathbf{R}^{2}=\mathbf{M}\mathbf{e}$
1	Н	0.00	10.62	10.73	9.81
2	Me	-0.01	10.70		
3	Et	-0.01	10.69		
4	CF ₃	0.40	5.70	6.05	4.75
5	CHF ₂	0.32	7.09		
6	CH ₂ F	0.15	8. 79		
7	CCI ₃	0.38	5.47		
8	CHCl ₂	0.31	7.25		
9	C≡CH	0.29	8.15		6.97
10	CH=CH ₂	0.11	9.49	10.11	8.64
11	Ph	0.12	9.38	9.54	8.91
12	CH ₂ Ph	0.03	9.84		
13	CN	0.57	5.34		4.2
14	CH ₂ CN	0.20	7.80	8.10	
15	CH ₂ COMe	0.15			8.37
16	CO ₂ Me	0.32	7.59		
17	CO_2Et	0.30	7.64		
18	CONH ₂	0.28	7.95	8.31	
19	CONHMe	0.28		8.24	
20	CONMe ₂	0.28		8.82	
21	CH ₂ OH	0.11	9.50	9.77	9.26
22	CH ₂ CH ₂ OH	0.06	9.96		
23	CH ₂ OMe	0.11	9.45		8.96
24	CH ₂ OCOMe	0.15	9.1		8.35
25	CH ₂ OCOEt	0.15			8.29
26	CH ₂ SH	0.12	8.27		
27	CH ₂ SMe	0.12	9.34		
28	CH_2NH_2	а	9.63 ^{<i>b</i>}		
29	CH ₂ NH ₃ ⁺	а	7.15*		
30	CH ₂ CH ₂ NH ₂	а	10.00		
31	CH ₂ CH ₂ NH ₃ ⁺	а	8.59 <i>*</i>		
32	CH ₂ NHCOMe	0.09	9.25		
33	CH ₂ NHCOPh	0.09	9.13		

" See the text. " Statistically corrected.

Table 3 pK_a Values for alkanols of formula $R^1R^2R^3COH$

	R¹	R ²	R ³	pK _a	$\Sigma \sigma_1$	Ref	
34	н	Н	Н	15.09	0.00	а	
35	Н	Н	Me	15.93	-0.01	а	
36	Н	Н	CF ₃	12.37	0.40	а	
37	Н	Н	CHF ₂	13.3	0.32	а	
38	Н	Н	CCl ₃	12.24	0.38	а	
39	Н	Н	CHČl₂	12.89	0.31	а	
40	Н	Н	CH ₂ Cl	14.31	0.17	а	
41	Н	Н	C≡ŪH	13.55	0.29	а	
42	Н	Н	$CH=CH_2$	15.52	0.11	а	
43	Н	Н	Ph -	15.4	0.12	а	
44	Н	Н	CH ₂ OH	15.37°	0.11	а	
45	Н	Н	CH ₂ OMe	14.82	0.11	а	
46	Н	н	CH ₂ OEt	15.12	0.11	а	
47	Н	H	CH ₂ OPh	15.1	0.15	а	
48	ОН	н	н	13.57°	0.24	b	
49	OH	н	Me	13.87°	0.23	b	
50	OH	н	Pr ⁱ	14.07°	0.25	b	
51	OH	н	CF ₃	10.50°	0.64	b	
52	ОН	Н	CCl ₃	10.34°	0.62	b	
53	ОН	Ph	CF ₃	10.30°	0.76	b	
54	OH	CF ₃	CF ₃	6.88°	1.04	b	
55	ОН	CHF ₂	CHF,	9.09°	0.88	b	

^a S. Takahishi, L. A. Cohen, H. K. Miller and E. G. Peake, *J. Org. Chem.*, 1971, **36**, 1205. ^b J. Hine and G. F. Koser, *J. Org. Chem.*, 1971, **36**, 1348. ^c Statistically corrected.

 σ_1/σ_R dichotomy (Charton⁶ has convincingly shown that no resonance effect, as commonly understood, is present). One such possible factor is σ -resonance, as we have previously adduced in a somewhat similar context.¹⁰ Here it would take the form $R_2NCH_2X \longleftrightarrow R_2N^+=CH_2X^-$ and is most likely to be important when the substituent X is highly electronegative and forms a stable anion, as is the case e.g. for CN and CF₃ but not, for instance, for COR. Such forces are important only at close range, as for XGY where $G = CH_2$, and are not expected in the defining situation where G is a benzene ring. Alternatively, some so far unrecognised steric perturbation may be present.¹¹

We conclude that primary and secondary amines give the same ρ_1 value to within the limits of error, and that tertiary amines differ by no more than could result from one or two mildly inaccurate pK_a values. Hence we adopt $\rho_1 = -9.2 \pm 0.4$ as the common value for these amines.

 ρ_1 Values for Alcohols of Type R¹R²R³COH.—The data used by Fox and Jencks¹ to derive $\rho_1 = -8.2$ for these are given in Table 3 and we confirm this value using the full set [eqn. (16), Table 4]. However, a plot of the data reveals two outliers, compounds 53 and 55, which carry inordinate weight; at the same time, MeOH is also an outlier (not an unusual characteristic for the first member of a homologous series). Elimination of all three leads to eqn. (18) with $\rho_1 =$ -9.0 ± 0.3 which we believe to be the best available compromise.

 p_1 Values for Amines of Type NH₂CH₂CH₂X.—This can also be addressed from the data of Table 2, and the appropriate eqns. (13)–(15) appear in Table 4. Eliminating SH, as for CH₂SH in the NH₂CH₂X set, greatly improves the correlation, and the choice lies between eqns. (14) and (15). In fact there is little to choose, and as a compromise we suggest the average value, $\rho_1 = -4.4 \pm 0.4$. Charton⁶ reports a value of -4.82. Ours involves an attenuation factor of 2.1 relative to the NH₂CH₂X set, rather less than the normal factor of 2.5 as used by Fox and

Table 4 Regression equations for $pK_a vs. \sigma_1$

Eqn.	Cons.	$-\rho_{I}$	n	<i>r</i> ²	\$	F
NH ₂	CH ₂ X					
(2)	10.39 (0.15)	10.02 (0.63)	25	0.916	0.46	250
Eli	minate CH ₂ SH	I:				
	10.45 (0.14)	10.15 (0.59)	24	0.931	0.42	298
Eli	minate CH ₂ SH	I, CN:				
	10.55 (0.14)	10.90 (0.65)	23	0.930	0.39	279
	minate CH ₂ SH					
		9.21 (0.44)	22	0.956	0.29	437
		I, CN, CF ₃ , CCl				
(6)	10.42 (0.11)	9.57 (0.57)	21	0.937	0.29	283
MeN	HCH ₂ X					
(7)	10.93 (0.35)	10.53 (1.54)	9	0.87	0.54	47
Eli	ninate CF ₃ :					
(8)	10.67 (0.32)	8.51 (1.62)	8	0.82	0.45	27
Me-N	ICH,X					
	10.03 (0.19)	11.01 (0.75)	11	0.960	0.38	216
	ninate CF ₃ :	,				
	9.96 (0.10)	10.11 (0.43)	10	0.986	0.20	564
NH-C	CH,CH,X					
	10.54 (0.20)	4.71 (0.69)	12	0.825	0.37	47
	ninate SH:			0.020	0.57	••
	10.60 (0.10)	4.59 (0.33)	11	0.954	0.18	188
	ninate SH, CN					
	10.54 (0.10)	4.18 (0.41)	10	0.928	0.17	103
R ¹ R ²	R ³ COH					
	15.88 (0.13)	8.23 (0.31)	22	0.972	0.41	698
· ·	ninate (53), (5)			0.772	0.11	070
	15.97 (0.13)	8.78 (0.33)	20	0.976	0.35	728
	ninate (34), (5)		20	0.270	0.55	720
(18)		9.01 (0.27)	19	0.985	0.29	1092

Table 5 σ_1 Values for amines and imines^a

	$\sigma_{\rm I}$		$\sigma_{\rm I}$
-NHCOCF ₃	0.38	$-N=C(CF_3)_2$	0.32
CH=NPh	0.33	-N=CHPh	0.13
Imidazol-1-yl (-NC=N)	0.51	Pyrazol-1-yl (-NN=C)	0.30
-NHC(Me)=NPh ^b	0.38	-N=C(Me)NHPh	< 0.15
-NHCONH ₂	0.23	$-N=C(NH_2)_2$	< 0.1

" Table 1 or ref. 6. b See the text.

Jencks¹ and subsequently (or that of 2.40 found by Charton),⁶ and must therefore be regarded as very provisional.

Further Consideration of σ_1 Values.—Comment is required on entries 54 and 61 of Table 1. The HLT compendium⁷ contains a value of $\sigma_1 = 0.38$ for the unit **56A**. Almost certainly, this value attaches to its tautomer **56B**. In the first place, **56B** is established as the dominant tautomer where the

$$-N=C(Me)NHPh \Longrightarrow -NH \simeq C(Me) \simeq NHPh^{+}$$
56A
56H
$$\implies -NHC(Me)C=NPh$$
56R

link is to alkyl.¹² Secondly, we assemble evidence in Table 5 which will demonstrate a simple distinction between high σ_1 values for species in which the C=X dipole is aligned away from the probe (left-hand column) and the nearest equivalent species (exact equivalence is rarely possible) where this dipole is reversed (right hand column); this second set of σ_1 values is much lower. Our estimate of σ_1 for **56A** uses the data for guanidines of Heesing and Schmaldt, ¹³ making allowance for

their tendency to underestimate σ_1 for other groups by 0.05–0.1 (cf. Table 1).

Entries 45 and 46 derive from compounds 28 and 30 after statistical correction of their pK_a values; the sequence $42 \rightarrow 45 \rightarrow 46$ shows about the same attenuation factor as for $27 \rightarrow 28 \rightarrow 29$, as would be expected.

 $σ_1$ Values for Charged Species.—It is well established ^{14,15} that poles and dipoles must not be mixed in Hammett-type correlations, the main reason being that the distance-dependence of their effects is quite different; indeed, σ-values for the former are meaningless unless the system is clearly defined. Nevertheless, it would be useful to have values we can use, alongside those for neutral species, in equations of type (1).

$$\Delta = \rho_{\rm L} \sigma_{\rm L} + \delta^{\rm B} \tag{19}$$

Wepster and co-workers¹⁴ describe the effect of charged substituents on ionisation of the probe Y in terms of eqn. (19), where $\rho_L = \rho_1$ for the uncharged substituent X and δ^B is a factor whose sign depends on that of the charge and whose magnitude is a function only of distance. Unfortunately, none of their values is any help here, since the minimum distance between probe and substituent is that of the benzene ring, and extrapolation to the very short distance involved in XCH₂Y is simply not possible. It will be seen that eqn. (19) is in line with the treatment of Jencks¹ in the case of T[±] (see above), where substitution of some other amine Y for -NHMe is handled by a correction of the form $\rho_I(\sigma_{I(Y)} - \sigma_{I(NHMe)})$.

In adapting Wepster's treatment, we proceed as follows. It is first of all useful to re-write eqn. (19) as (20), where δ^{B} is replaced by $\rho_{I}\delta^{\pm}$ so that protonation (or deproton-

$$\Delta pK_{a} = \rho_{I}\sigma_{I}^{\pm} = \rho_{I}(\sigma_{I} + \delta^{\pm})$$
(20)

ation) of a given substituent simply adds a distance-dependent term to σ_1 ; for a cation, $\sigma_1^{\pm} = \sigma_1 + \delta^{\pm}$. We next consider the case ¹ of MeNH₂⁺CH₂OH, pK_a = 9.98. Relative to MeOH, we have $\Delta pK_a = 5.11$; dividing by $\rho_1 = -9.1$ gives $\sigma_1^{\pm} = 0.56$ which, subtracting $\sigma_1 = 0.13$ for -NHMe, results in $\delta^{\pm} = 0.43$ for the case of XCH₂Y. This same value of δ^{\pm} can be derived from ' σ_1 ' = 0.60 as given for -NH₃⁺ by De Tar ^{3b} (Table 6).

The (statistically corrected) pK_a values for $NH_2(CH_2)_2NH_2$ and $NH_2(CH_2)_3NH_2$ (Table 2) may be used to derive the appropriate σ_1 and σ_1^{\pm} values for $-CH_2NH_2$ and $-CH_2CH_2NH_2$ (Table 6). We now attempt to calculate these σ_1^{\pm} values from σ_1 and δ^{\pm} . Since the expected ¹⁵ distance dependence for the action of a dipole on a pole is $1/r^2$, but that for a pole on a pole is 1/r, the attenuation factor of 2.5 per methylene (or heavy atom) link adduced by Jencks¹ for the former should fall to ≈ 1.6 in the latter case. Use of this factor to attenuate δ^{\pm} leads successively to values of 0.43, 0.27 and 0.17 for zero, one and two interposed linkages. The fit observed to σ_1^{\pm} is exact (Table 6).

A check on this treatment is provided by species 56. Protonation of 56A to the cation 56H involves formal protonation at the α -position, $\delta^{\pm} = 0.43$. Protonation of 56B to the same common cation involves formal protonation at the γ -position, $\delta^{\pm} = 0.17$. Virtually the same value of σ_1^{\pm} is produced by either means (Table 6). We shall take the mean value, $\sigma_1^{\pm} = 0.56$, as that to use for the dihydroquinazolinium cation as encountered elsewhere.⁵ Values for both protonated forms of hydrazine may be derived in a similar manner (Table 6).

If preferred, these δ^{\pm} values may be multiplied by ρ_1 to obtain ΔpK_a directly; this results in values of 3.91, 2.46 and 1.55 respectively for zero, one and two extra linkages relative to

Table 6 Effective σ_1 values for cations

	Neutral species	$\sigma_{I}{}^{a}$	Cation	δ^{\pm}	$\sigma_{l}^{\pm b}$		
					calc.	obs. ^c	
		0.13	-NH ₂ Me ⁺	0.43	0.56°		
	$-NH_2$	0.17	-NH3+	0.43	0.60	0.60 ^d	
	CH,NH,	0.08 '	-CH ₂ NH ₃ ⁺	0.27	0.35	0.35	
	-CH,CH,NH,	0.04°	-CH ₂ CH ₂ NH ₃ ⁺	0.17	0.21	0.19	
	-NHNH,	0.22	$-NH_{2}^{+}NH_{2}^{-}$	0.43	0.65		
	-NHNH ₂	0.22	-NHNH3 ⁺	0.27	0.49		
	-NHC(Me)=NPh	0.38	-NHC(Me)=NHPh ⁺	0.17	0.55°		
	-N=C(Me)NHPh	< 0.15	-NH ⁺ =C(Me)NHPh	0.43	< 0.58°		

" Consensus value from Table 1. " $\sigma_1^{\pm} = \sigma_1 + \delta^{\pm}$." See the text. " Ref. 3(b).

X-C-Y. The first is appreciably less than Jencks' estimate¹ of 4.8, the difference resulting chiefly from the revised amine σ_1 values. The second and third compare with $\Delta p K_a 2.15$ and 0.96 for the mutual effect of charge in the series NH₂(CH₂)_nCO₂H where n = 1 or 2 (since the negative charge is on oxygen),¹⁶ though the latter comparison may not be entirely fair since some conformational distortion due to mutual charge attraction is possible.

Conclusions

Basing our results on Charton's⁶ σ_1 values as appropriate to the aqueous or near-aqueous conditions in which tetrahedral intermediates are commonly observed, we have derived new ρ_1 values of -9.1 ± 0.4 for the effect of substituent X on the pK_a of probe Y in X-C-Y, and of -4.4 ± 0.4 when X-C-C-Y is involved. While the former lies within the limits -8.4 ± 1 suggested by Fox and Jencks,¹ it is more tightly drawn and we believe it to be more satisfactory. The chief doubt concerning these (or any) ρ_1 values attaches to the possibility of saturation effects, which would of course reduce them. This is partly contra-indicated by the presence of tetrasubstituted compounds among the data set of Table 3, but only further work can resolve this point.

We also draw attention to the possibility of assigning σ_1 values to charged substituents, and a methodology for converting σ_1 for a base to σ_1^{\pm} for its cation is derived. (By subtracting instead of adding δ^{\pm} this should work equally well for anions, but we have no direct information on this point.) As is well established,^{14,15} any such value must be used with care, but there are contexts in which their use may prove convenient.⁵

Acknowledgements

I thank Professor M. Charton for valuable discussions.

References

- 1 J. P. Fox and W. P. Jencks, J. Am. Chem. Soc., 1974, 96, 1436.
- See, e.g., A. C. Satterthwait and W. P. Jencks, J. Am. Chem. Soc., 1974, 96, 7018; H. Fischer, F. X. DeCandis, S. D. Ogden and W. P. Jencks, J. Am. Chem. Soc., 1980, 102, 1340; J. C. Fishbein, H. Baum, M. M. Cox and W. P. Jencks, J. Am. Chem. Soc., 1987, 109, 5790.
- 3 See, e.g., (a) J. P. Guthrie, J. Am. Chem. Soc., 1978, 100, 5892; (b) D. F. De Tar, J. Am. Chem. Soc., 1982, 104, 7205.
- 4 C. D. Ritchie and W. F. Sager, Prog. Phys. Org. Chem., 1964, 2, 323.
- 5 P. J. Taylor, kinetic studies in preparation.
- 6 M. Charton, Prog. Phys. Org. Chem., 1981, 13, 119.
- 7 C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.
- 8 C. Laurence, M. Berthelot, M. Lucon, M. Helbert, D. G. Morris and J. F. Gal, J. Chem. Soc., Perkin Trans. 2, 1984, 705.
- 9 D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1970.
- 10 P.J. Taylor and A.R. Wait, J. Chem. Soc., Perkin Trans. 2, 1986, 1765.
- 11 M. Charton, personal communication.
- 12 M. J. Cook, A. R. Katritzky and S. Nadji, J. Chem. Soc., Perkin Trans. 2, 1976, 211.
- 13 A. Heesing and W. Schmaldt, Chem. Ber., 1978, 111, 320.
- 14 A. J. Hoefnagel, M. A. Hoefnagel and B. M. Wepster, J. Org. Chem., 1978, 43, 4720.
- 15 S. Marriott, W. F. Reynolds and R. D. Topsom, J. Org. Chem., 1985, 50, 741.
- 16 A. R. Wait, unpublished data.

Paper 3/02045B Received 8th April 1993 Accepted 12th May 1993